Category Archives: golf

Deep Thoughts: Do your muscles really have a memory?

You can run quarters on the track in 80 seconds. Maybe you can even do them in 60 seconds. Maybe you hit a PR for sustained power on the bike. You can drive your golf ball 250 yards down the fairway. Does this mean you are really performing at your potential?

Every time we practice a movement, we are reinforcing a particular movement in our brain. This is commonly referred to as “muscle memory”. Training technique is an often overlooked aspect in endurance world. Each joint in your body has an axis around which it moves, with muscles controlling the movement. These tissues are engineered to move a specific way. If we learn good muscle memory, we continually re-enforce good habits – and come competition day – we perform at our potential.

Competition to you might be a round of golf with friends on Sunday or qualifying for the 10,000 meter at the Olympics. At every level, focusing on your form can improve your performance.  Our body and mind strive to get the job done – at all costs. Often, this can mean we learn an incorrect strategy to get the job done. And even if your form is better than most, we all suffer form alterations when we fatigue. When these form changes occur, we have a decrease in efficiency. Since we are performing “different” than we normally do, we put more strain through our body’s tissues and are more likely to become injured. Understanding the stages of motor learning will shed some light on why we need to work on our form in the first place:

  1. Unconscious Incompetence – this means we have no idea that we are doing something with incorrect form. Most of us fall in this category. Look at the picture of the woman landing from a jump. The joints of the lower body are designed so that the knee tracks over the second toe when we land from a jump. The goal is to preserve proper alignment when we move. This athlete has no idea that her knees crashing to the inside are a problem. She doesn’t know that it significantly increases her risk for an ACL tear, patellofemoral syndrome, hip impingement, or a host of other issues. She doesn’t know that this landing technique will hurt her running, jumping, and cutting performance.
  2. Conscious Incompetence – We reviewed this athlete’s form issues with her. We showed her that the jump landing technique she uses can lead to injury and compromises her performance. She is now aware of it and understands the issue. This is the point where specific corrective exercises, cues, and drills are prescribed to her to correct this muscle memory. The more she practices these correctly, the more she re-enforces correct motion – however this stage requires a lot of conscious thought to perform the movement correctly . Because of the increased cognition or thought that this stage requires, the athlete may in fact be less efficient at their particular sport because they are “thinking” so much about the way in which they move. This is why drills often seem challenging.
  3. Conscious Competence – The athlete understands that there was an issue, knows correct technique, and now is able to perform correctly without thinking about it. She has removed the stresses from a flawed technique, and can perform correctly in sports-specific drills and in competition. The is the stage we want to be at! Think about some of the best performances you’ve ever done. What were you thinking about? Most successful athletes can’t even remember what they were focusing on. They were in “the zone” and just let their bodies perform using the skills they learned through a lot of practice.

In our quest to improve, we often focus on adding intensity or training volume thinking it to be the magic fix to take us to the next level. We’ve often heard the phrase “train smarter, not harder.” Adding time and focus to alter your technique pays off in spades. So let’s expand that saying to “move smarter, not harder”. The focus of the biomechanical analysis done in the SPEED Clinic @ the UVA Center for Endurance Sport is identify your unique compensations and make those muscles smarter!

Is stretching right for you?

Should I stretch? Should I stretch before or after? Will stretching make me a better athlete? Will stretching make me a more confident public speaker? We get these questions a lot. Don’t worry, we are happy to help and the confusion is not your fault. Seems every media outlet out there wants the BIG STORY. The headlines read  “best new stretch”, “best way to stretch”, or maybe even “stretching is killing you” –they really want you to by their magazine! So should you stretch or not? Is it OK to be tight? Is it a benefit? Is it possible to be too flexible?

Muscles, tendons, and ligaments shorten and lengthen as our joints move. Therefore, the amount of mobility you need in these tissues is pretty simple to define. You need enough for the tasks and sports you do, and nothing more. Is it really that simple? Yes – and let’s look at what happens when structures around our joints are too tight.

  1. Tightness in the muscles, tendons, and ligaments around a joint causes increased strain in the tissues. Think about a rubber band. You can stretch a rubber band back and forth from slack to fairly taught all day and it will be OK. Think about how much tension is in the rubber band as you shorten and lengthen it. Now imagine pulling he rubber band taught to 80% and then pulling it as far as you can. Do this for a while and look at the rubber band. If it hasn’t popped yet, you’ll notice that the rubber band actually begins to fray a bit – the increased tension inside the band causes damage. This increased tightness inside soft tissues limits our ability to withstand chronic strain inside our muscles – and leads to muscle strain and tears.
  2. The attachment points of your muscles, tendons, and ligaments form a bag of connective tissue around each and every joint called a capsule. Tightness in these structures can change the way the joint moves. Think about door pivoting open and closed on its hinge  - there is an axis on which the door moves. The door has no problem opening and shutting. Now imagine a force trying the twist the door as it opens and closes. This twisting force tries to move the door in a way that the hinges are not set up to pivot around. If you keep trying to open and shut the door, something will fail (the hinges will loosen, the door will warp)  – the point is that trying to move a joint in a manner that does not use its normal axis will cause pre-mature wear on structures. Tight soft tissues change the axis of mobility through the joint and cause excess wear on he surfaces of the joints  – the is the mechanism for the development of arthritis.

So now that we know the problems associated with tight tissues, all of us should stretch right?…. because the magazines say that stretching causes you to be more agile, stronger, recover faster, and warm up the tissues? Not a single one of these claims has ever been substantiated. You need “enough” mobility around a joint for the sports you perform. A runner and a gymnast have entirely different needs for mobility. Having more flexibility than needed for your sport has never been proven to be an advantage. In fact, we see just as many injuries to people that are hyper-mobile (have tissues that are too loose) as people who are tight.

Stretching a muscle is tearing tissue. Do I advocate stretching? Breaking down the structural integrity of our body is not something we should do unless its needed. Would you tear holes in your clothes for the fun of it? When an individual needs to stretch areas of their body that compromise their ability to perform, stretching is 100% part of their plan. But if there is no restriction on soft tissue mobility, there is no evidence that stretching will provide any benefit at all. In our next post, we’ll tackle the different types of stretching. For now, “enough” is enough.

Plantar Fasciitis

Plantar fasciitis is one of the most common injuries in runners, recreational and competitive alike. Although it can be frustrating to experience, there is good news for plantar fasciitis sufferers: it gets better! This frustration is perhaps best illustrated by the bumper sticker available at the Ragged Mountain Running Shop that reads, “I survived plantar fasciitis!” Mark and Cynthia don’t dispense stickers proclaiming the survival of stress fractures or runner’s knee. Perhaps the mystery regarding the healing of these injuries are more widely understood. Implementing a comprehensive approach to plantar fasciitis will help ensure a more speedy recovery and return to full training.

The plantar fascia is a broad band of tissue that starts at the heel, then widens as it extends through the foot to attach near the toes. The fascia supports the arch and foot musculature. The fascia is most commonly injured near its insertion at the heel. There are good reasons for this: the fascia is stressed with impact loading at every heel strike, then is stretched as we go through the gait cycle. The area near the heel also has less blood supply than other regions, thus limiting its healing capacity. Pain occurs on the bottom of the foot near the heel and is particularly noticeable first thing in the morning as well as during and after running. As symptoms worsen, the runner may also have pain after sitting for a long period of time or sometimes with every step! The term fasciitis is perhaps a bit of a misnomer as it implies that inflammation is the cause. Inflammation is just part of the package. In addition to inflammation, scar tissue and even tearing can occur. This explains why anti-inflammatories alone rarely prove curative.

Treatment includes measures to control pain and inflammation, minimize overload forces, and to promote tissue healing. Proper shoe wear is essential. Anti-inflammatories are useful (as long as there is no reason not to take them ie allergies to anti-inflammatories or aspirin, pregnancy, or if you have a history of stomach ulcers, or kidney or liver disease). In chronic or especially painful cases, I may prescribe a short course of oral steroids first. Stretching of the calf muscles and plantar fascia is performed. Remember to perform the calf stretch with the knee bent as well as straight as these 2 positions emphasize different muscles. The fascia is stretched by extending the toes against a wall or the floor. Strengthening the foot and ankle muscles is important. Useful exercises include towel scrunches, picking up marbles, and “short foot” exercises, where the runner stands on one foot while maintaining the arch of the foot. Several devices are marketed to assist with plantar fasciitis. I have found good success recommending the counterforce arch brace designed by my sportsmedicine mentor, Robert Nirschl, MD, MS and available through running shops or direct from Medical Sports, Inc. Other useful devices include gel heel cushions and over the counter orthotics. If symptoms persist beyond 6 weeks of this level of treatment, formal physical therapy can be useful to apply modalities such as iontophoresis (delivering anti-inflammatory medication with an electric stimulator) or ultrasound, manual therapy to ensure proper joint motion, and expanding one’s exercise regimen. A night splint designed to apply a light stretch while sleeping can be useful. In select instances, custom orthotics may be indicated to control specific biomechanical contributors. In longterm or particularly painful cases, steroid injections can be applied to help facilitate the rehab process. Since steroid serves only to control inflammation, injections should not be viewed as treatment in and of themselves. Additionally, since steroids can potentially weaken the local tissues, I recommend refraining from running for 10-14 days after this type of injection.

In rare instances, surgery may be indicated, but is recommended only after the runner has failed to respond to the conservative treatment for several months. Alternative therapies also exist: shock wave therapy, magnets, and accupuncture. Although these may prove to be more useful, we simply have limited experience and research regarding these treatments. They can also be costly, and therefore are not as widely used.

There are other, less common causes of heel pain in runners including a bruised heel pad, stress fracture and nerve entrapments. Imaging studies such as xrays, bone scan, or MRI and nerve testing may be recommended if the runner is not responding to treatment or if initial presentation suggests a different cause.

Most runners may continue to train while plantar fasciitis is being treated, as long as the pain is considered mild and is not forcing a change in the gait. If pain is more than mild, back things down a level. Don’t run, however, if pain forces you to limp or change your gait. If you have to alter your training schedule, substitute cross training to maintain fitness. I recommend water running, the elliptical, or biking. Train at similar intensities and durations that you would for your land training.

Be patient, yet diligent with the rehabilitation program. And once resolved, you can proudly display that sticker!